

# **Infusion Product Guide**



## Why Epoxy?

Under the CPD brand, Polytek Development Corp. manufactures a variety of epoxy resin systems that are well suited to the infusion process. Before delving into specifics let's take a moment to consider why you should select an epoxy for your next infusion project.

#### Versatility

Epoxy resin systems can be formulated with various curing agents, diluents, fillers and other additives to product an almost unlimited range of properties. The tremendous versatility of epoxy makes it possible to tailor the handling and mechanical properties of an epoxy resin system to what is needed.

#### **No Volatile Loss**

Epoxy resin systems formulated for the fabrication of structural composites are typically 100 percent solids. No byproducts, volatile or otherwise, are formed as these systems polymerize. By and large, there are no VOC (Volatile Organic Compound) issues associated with the handling of epoxy resin systems.

#### **Chemical Resistance**

Properly cured epoxy resin systems have excellent chemical resistance to acids, bases and solvents. In contrast to other organic polymers, epoxy resin systems are particularly resistant to caustic substances, which makes epoxy the ideal choice for long lasting parts.

#### Low Shrinkage

Epoxy resin systems exhibit little shrinkage during cure and allow for the precise reproduction of mold surfaces. The dimensional stability provided by an epoxy resin system gives rise the fabrication of composite parts and structures with lower ingrained stress levels. As a result, finished pieces are stronger and more durable than those produced using organic polymers that exhibit higher values of shrinkage.

### **Adhesion Reinforcement**

The supreme advantage of epoxy is its excellent adhesion to almost any surface. Epoxy adheres tenaciously to a broad range of substrates, particularly those that are frequently used as reinforcement in composite parts and structures.

#### **Carbon Fiber**

Carbon fiber commonly has an epoxy binder. This binder further promotes the adhesion of epoxy to the substrate and makes an epoxy the ideal resin system for the fabrication of carbon fiber composites.

#### **Kevlar**®

Kevlar® typically does not have a binder. However, the superior adhesion characteristics of epoxy make it preferable to other organic polymers for the fabrication of Kevlar® composites.

#### **Fiberglass**

More so than carbon fiber and Kevlar® composites, fiberglass composites are susceptible to attack by water vapor. Water vapor attacks the interface between resin and reinforcement and leads to degradation of the composite structure. In the long term, epoxy provides a barrier against water vapor that is superior to other organic polymers and can be used to fabricate more durable fiberglass composites. Fiberglass is available with a wide variety of binders. Many binders have been formulated to promote the adhesion of specific organic polymers to fiberglass. It is important to select a grade of fiberglass with an epoxy compatible binder when using an epoxy resin system to construct fiberglass composites.

#### **Core Material**

Where core material has been incorporated into the design of a laminate to produce a lightweight composite structure, using an epoxy resin system can provide further weight savings. The superior adhesion characteristics of epoxy eliminate the need for a resin-rich mat between the structural reinforcement and the core material.

## Selecting an Epoxy Resin System for Infusion

Various options need to be weighed when selecting an epoxy resin system for the infusion process. The considerations that need to be made fall into two categories: end-product requirements and processing requirements.

### **End-Product Requirements**

End-Product requirements are those that apply to the function and/or use of the finished composite part or structure.

#### **Operating Temperature**

The operating temperature or service temperature of the article to be manufactured is paramount to the selection of an epoxy resin system. The heat deflection temperature (HDT) of the system selected must be greater than or equal to this intended operating temperature.

Service temperature less than  $210^{\circ}F$  – See Table 1 Service temperature between  $210^{\circ}F$  and  $310^{\circ}F$  – See Table 2 Service temperature greater than  $310^{\circ}F$  – See Table 3

### **Other Physical Properties**

Other physical properties such as the desired compressive, flexural, and tensile strengths should be considered when selecting an epoxy resin system for infusion. Please refer to the physical properties listed in the lower half of Tables 1, 2 and 3 to determine if one of the CPD infusion systems meets your end-product requirements. If one of these systems does not meet your end-product requirements, we can custom tailor an epoxy resin system to meet your needs.

### **Process Requirements**

There are five main process requirements for manufacturing a composite part or structure.

### 1. Cure Cycle

The first process requirement that should be considered when selecting an epoxy resin system for infusion is the desired cure cycle. Please review the capabilities of your equipment, tooling and ancillary materials when choosing a cure cycle. Please also consider the temperature your mold must withstand.

#### Room Temperature Cure

Composite Polymer Design offers a variety of two-part epoxy resin systems that can be cured at room temperature, 68-77°F (20-25°C)\*

#### **Elevated Temperature Cure**

CPD also offers one-part and two-part epoxy resin systems that must be cured at an elevated temperature.

### 2. Post Cure Cycle

The second process requirement that should be considered when selecting an epoxy resin system for infusion is post cure cycle. Not all epoxy resin systems require a post cure. However, it is typically the case with epoxy that a post cure is required to develop ultimate properties. As with choosing a cure cycle, it is important to review the capabilities of your equipment, tooling and ancillary materials when choosing a post cure cycle. Again, please consider the temperature your mold must withstand.

#### Supported

In the first stage of a post cure cycle, a composite part or structure made using an epoxy resin system typically needs to be supported. That is, it should remain the mold to reduce the likelihood of any deformation that may occur because of thermal shock. A supported post cure is usually conducted at temperature less than or equal to 150°F to avoid damaging the mold.

#### Unsupported

Prior to the latter stages of a post cure cycle, a composite part or structure made using an epoxy is typically removed from the mold and post cured free standing. An unsupported post cure is usually conducted at temperatures higher than 150°F, but should not exceed the heat deflection temperature of the epoxy resin system.

### 3. Viscosity

Another process requirement to consider when selecting an epoxy resin system for infusion is viscosity. CPD offers a variety of low viscosity resins that have been formulated specifically for infusion. One advantage of using epoxy versus other organic polymers is that epoxy resin systems exhibit a latent build in viscosity. That is, they atypically remain low in viscosity much longer than other organic polymers, extending the work life without compromising gel time.

#### Input Resin Temperature

The input resin temperature is the temperature of the resin at the point it is being infused. Typically, the input resin temperature is equivalent to the ambient temperature of the shop or facility in which the resin system is being used. In some instances, the input resin temperature is raised to further reduce the viscosity of an epoxy resin system. Composite Polymer Design reports viscosity at 77°F (25°C).

#### Mold Temperature

Ideally, the mold temperature should be the same as the input resin temperature to maintain a consistent viscosity.



# Estimate of viscosity reduction % change with temperature change

| Temperature  | Percent Viscosity<br>Reduction |
|--------------|--------------------------------|
| 77°F (25°C)  | 0%                             |
| 100°F (38°C) | 45%                            |
| 120°F (49°C) | 70%                            |
| 140°F (60°C) | 85%                            |

### 4. Work Life

The work life required to infuse a composite part or structure should also be considered when selecting an epoxy resin system for infusion. CPD does not report the work life of the epoxy resin systems it manufactures, because work life generally varies with mass and temperature. Rather, CPD reports the gel time of each of its resin systems in a 150 gram mass at 77°F (25°C).

#### Mass Dependent

The work life of an epoxy resin system is mass dependent. In a large mass, the work life of an epoxy resin system will be reduced and in a small mass, the work life will be prolonged.

#### Temperature Dependent

The work life of an epoxy resin system is also temperature dependent. At an elevated temperature, the work life of an epoxy resin system will be shortened and at a reduced temperature, the work life will be extended.

### 5. Demold Time

The final process requirement that should be considered when selecting an epoxy resin system for infusion is the demold time. Demold time is the point at which the resin system has cured to a degree that a composite part or structure is strong enough to be removed from the mold. In many cases, a composite part or structure will be removed from the mold following the supported stage of a post cure cycle and in others it will be removed from the mold after a satisfactory time at room temperature.

#### Mass Dependent

Similar to work life, the demold time of a composite part or structure made using an epoxy resin is mass dependent. In a large mass, the demold time will be reduced and in a small mass, the demold time will be prolonged.

| + | Small Mass    | Mass        | Large Mass     |
|---|---------------|-------------|----------------|
|   | Longer Demold | Demold Time | Shorter Demold |

#### Temperature Dependent

The demold time of a composite part or structure made using an epoxy resin is also temperature dependent. At an elevated temperature, the demold time will be shortened and at a reduced temperature, the demold time will be extended.

| Low Temp      | Temperature | High Temp      |
|---------------|-------------|----------------|
| Longer Demold | Demold Time | Shorter Demold |

## Type of Structural Reinforcement

Another factor that impacts demold time is the type of structural reinforcement used to build a composite part or structure. Fiberglass is a good conductor of heat, while carbon fiber and Kevlar® are better insulators. This means that, all other factors being equal the demold time of a fiberglass composite will be greater than the demold time of a carbon fiber or Kevlar® composite.

# Work life reduction % change with temperature change

| Temperature  | Percent Work Life<br>Reduction |  |  |
|--------------|--------------------------------|--|--|
| 77°F (25°C)  | 0%                             |  |  |
| 100°F (38°C) | 60%                            |  |  |
| 120°F (49°C) | 80%                            |  |  |
| 140°F (60°C) | 90%                            |  |  |

# Table 1 CPD Room Temperature Infusion Systems

| Room Temperature Systems                    | 4281A/4284B | 2110A/9260B  | 4281A/4286B | 2110A/9218B | 2110A/9227B  | 2110A/9297B |
|---------------------------------------------|-------------|--------------|-------------|-------------|--------------|-------------|
| Elevated Temperature Cure Required in Mold1 | No          | No           | No          | No          | No           | No          |
| Post Cure Required <sup>1</sup>             | No          | No           | No          | Yes         | No           | No          |
| Post Cure Recommnded <sup>1</sup>           | Yes         | Yes          | Yes         | Yes         | Yes          | Yes         |
| Handling Properties                         |             |              |             |             |              |             |
| Resin Viscosity at 77°F, cps                | 900         | 1,200        | 900         | 1,200       | 1,200        | 1,200       |
| Hardener Viscosity at 77°F, cps             | 8           | 30           | 12          | 40          | 20           | 30          |
| Mixed Viscosity at 77°F, cps                | 150         | 300          | 220         | 290         | 300          | 300         |
| Mix Ratio By Weight                         | 100A:22B    | 100A:28B     | 100A:22B    | 100A:30B    | 100A:28B     | 100A:26B    |
| Mix Ratio by Volume                         | 100A:27B    | 3A:1B        | 100A:27B    | 2.5A:1B     | 3A:1B        | 3.1A:1B     |
| Gel Time at 77°F, 150g, min.                | 40          | 50           | 70          | 85          | 130          | 290         |
| Physical Properties                         |             |              |             |             |              |             |
| Color                                       | Amber       | Straw Yellow | Amber       | Amber       | Straw Yellow | Amber       |
| Shore Hardness                              | 86D         | 84D          | 86D         | 86D         | 84D          | 87D         |
| Tensile Strength, psi                       | 10,300      | 10,800       | 12,500      | 12,600      | 10,300       | 10,700      |
| Tensile Modulus, psi                        | 348,000     | 425,000      | 529,000     | 499,000     | 421,000      | 458,000     |
| Tensile Elongation, %                       | 5.9         | 7.2          | 4.3         | 5.8         | 7.2          | 8.8         |
| Compressive Strength, psi                   | 18,800      | 14,200       | 15,800      | 16,700      | 13,800       | 12,900      |
| Flexural Strength, psi                      | 15,400      | 18,400       | 20,500      | 19,500      | 17,500       | 17,300      |
| Flexural Modulus, psi                       | 413,000     | 479,000      | 437,000     | 494,000     | 469,000      | 397,000     |
| HDT, Post Cured, °F                         | 180         | 200          | 210         | 210         | 190          | 210         |
| Izod Impact, Notched, ft-lb/in              | 1.16        | 1.12         | 1.15        | 1.06        | 1.09         | 1.27        |
| Shrinkage, in/in                            | <0.002      | <0.002       | <0.002      | <0.002      | <0.002       | <0.002      |

1 Tooling must be able to withstand the temperatures it will be exposed to during the cure cycle and the supported stage(s) of a post cure





# Table 2 CPD Medium Temperature Infusion Systems

| Medium Temperature Systems                      | 4310A/9239B | 4310A/9234B | 4310A/9235B | 4310A/9231B |
|-------------------------------------------------|-------------|-------------|-------------|-------------|
| Elevated Temperature Cure Required in Mold1     | No          | No          | No          | Yes         |
| Post Cure Required1                             | Yes         | Yes         | Yes         | Yes         |
| Post Cure Recommnded1                           | Yes         | Yes         | Yes         | Yes         |
| Handling Properties                             |             |             |             |             |
| Resin Viscosity at 77°F, cps                    | 1,200       | 1,200       | 1,200       | 1,200       |
| Hardener Viscosity at 77°F, cps                 | 15          | 15          | 20          | 100         |
| Mixed Viscosity at 77°F, cps                    | 400-600     | 400-600     | 400-600     | 500-700     |
| Mixed Viscosity at 100°F, cps                   | 200-300     | 200-300     | 200-300     | 250-350     |
| Mix Ratio by Weight                             | 100A:20B    | 100A:25B    | 100A:26B    | 100A:35B    |
| Mix Ratio by Volume                             | 4A:1B       | 3.2A:1B     | 3A:1B       | 2.33A:1B    |
| Gel Time at 77°F, 150g, min.                    | 60          | 110         | 130         | 500         |
| Gel Time at 100°F, 150g, min.                   | 25          | 40          | 50          | 180         |
| Minimum Recommended Cure Temperature2 (In Mold) | 68°F        | 68°F        | 68°F        | 150°F       |
| Physical Properties                             |             |             |             |             |
| Color                                           | Amber       | Amber       | Amber       | Amber       |
| Shore Hardness                                  | 85D         | 87D         | 88D         | 89D         |
| Tensile Strength, psi                           | 11,800      | 12,600      | 11,900      | 7,100       |
| Tensile Modulus, psi                            | 424,000     | 419,000     | 427,000     | 367,000     |
| Tensile Elongation, %                           | 4.6         | 4.1         | 3.9         | 2.5         |
| Compressive Strength, psi                       | 15,800      | 16,700      | 15,400      | 13,500      |
| Flexural Strength, psi                          | 17,200      | 19,500      | 18,900      | 14,100      |
| Flexural Modulus, psi                           | 446,000     | 454,000     | 448,000     | 411,000     |
| HDT, Post Cured, °F                             | 259         | 312         | 314         | 310         |
| Izod Impact, Notches, ft-lb/in                  | 1.22        | 0.76        | 1.25        | 0.78        |
| Shrinkage, in/in                                | <0.002      | <0.001      | <0.001      | <0.001      |

Tooling must be able to withstand the temperatures it will be exposed to during the cure cycle and the supported stage(s) of a post cure cycle.

2 A post cure at temperatures in excess of the minimum recommended cure temperature is required to develop ultimate properties.



# Table 3 CPD High Temperature Infusion Systems

| High Temperature Systems                             | 4310A/9232B | 4303A/4303B | 4307A/4303B | 2134A/4307B | 2135A/9529B | 4305    |
|------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|---------|
| Elevated Temperature Cure Required in Mold1          | No          | Yes         | Yes         | Yes         | Yes         | Yes     |
| Post Cure Required1                                  | Yes         | Yes         | Yes         | Yes         | Yes         | Yes     |
| Post Cure Recommnded1                                | Yes         | Yes         | Yes         | Yes         | Yes         | Yes     |
| Handling Properties                                  |             |             |             |             |             |         |
| Resin Viscosity at 77°F, cps                         | 1,200       | 1,800       | 3,500       | 7,500       | 7,700       | NA      |
| Hardener Viscosity at 77°F, cps                      | 40          | 200         | 200         | 200         | 2,800       | NA      |
| Mixed Viscosity at 77°F, cps                         | 620         | 750         | 1,800       | 1,800       | 5,500       | 5,700   |
| Mixed Viscosity at 100°F, cps                        | 340         | NA          | NA          | 860         | 1,700       | 2,900   |
| Mixed Viscosity at 120°F, cps                        | NA          | 200         | 500         | 380         | 600         | 500     |
| Mixed Viscosity at 140°F, cps                        | NA          | 100         | 250         | 270         | 320         | 200     |
| Mix Ratio by Weight                                  | 100A:20B    | 100A:107B   | 100A:88B    | 100A:90B    | 100A:6B     | NA      |
| Mix Ratio by Volume                                  | 4A:1B       | 100A:103B   | 100A:82B    | 100A:89B    | 13.8A:1B    | NA      |
| Gel Time at 77°F, 150g, min.                         | 75          | NA          | NA          | 1,440       | 720         | NA      |
| Gel Time at 100°F, 150g, min.                        | 35          | NA          | NA          | NA          | 240         | NA      |
| Gel Time at 120°F, 150g, min.                        | NA          | >180        | >180        | 360         | 90          | >480    |
| Gel Time at 140°F, 150g, min.                        | NA          | >120        | >120        | NA          | 45          | >240    |
| Gel Time at 170°F, 150g, min.                        | NA          | 120-240     | 120-240     | NA          | NA          | NA      |
| Minimum Recommended Cure tempera-<br>ture2 (In Mold) | 68°F        | 170°F       | 170°F       | 160°F       | 150°F       | 250°F   |
| Physical Properties                                  |             |             |             |             |             |         |
| Color                                                | Brown       | Brown       | Brown       | Dark Amber  | Dark Amber  | Amber   |
| Shore Hardness                                       | 88D         | 87D         | 87D         | 90D         | 92D         | 87D     |
| Tensile Strength, psi                                | 12,900      | 12,100      | 10,500      | 12,200      | 10,200      | 8,600   |
| Tensile Modulus, psi                                 | 431,000     | 486,000     | 451,000     | 472,000     | 470,000     | 527,000 |
| Tensile Elongation, %                                | 3.1         | 2.4         | 2.5         | 2.3         | 2.8         | 2.1     |
| Compressive Strength, psi                            | 16,900      | 25,600      | 14,700      | 21,300      | 27,100      | NA      |
| Flexural Strength, psi                               | 17,900      | 20,500      | 15,300      | 17,900      | 15,600      | NA      |
| Flexural Modulus, psi                                | 448,000     | 536,000     | 354,000     | 488,000     | 485,000     | NA      |
| HDT, Post Cured, °F                                  | 356         | 375         | 375         | 385         | 450         | 425     |
| Izod Impact, Notched, ft-lb/in                       | 1.23        | 1.01        | 1.06        | 1.01        | 1.06        | NA      |
| Fracture Toughness, Kic, MPa*m ½                     | NA          | NA          | 1.02        | NA          | NA          | NA      |
| Strain Energy Release Rate, Gic, KJ/m2               | NA          | NA          | 0.70        | NA          | NA          | NA      |
| Shrinkage, in/in                                     | <0.001      | <0.005      | <0.005      | <0.002      | <0.003      | <0.002  |

Tooling must be able to withstand the temperatures it will be exposed to during the cure cycle and the supported stage(s) of a post cure cycle.

2 A post cure at temperatures in excess of the minimum recommended cure temperature is required to develop ultimate properties.

#### **Disclaimer:**

The information contained in this guide is believed to be reliable. We do not guarantee the accuracy of the information or make any warranty of merchantability or a warranty of fitness for a specific purpose or use. In no event, should Polytek Development Corp. be liable for incidental or consequential damages.



www.epoxi.com www.polytek.com info@epoxi.com sales@polytek.com

(800) 755-8568

55 Hilton Street Easton, PA 18042